PROPOSTA PER REALIZZAZIONE DI COMPLESSO NATATORIO STAGIONALE SCOPERTO

art. 183 comma 15, D.lgs 50/2016

Inquadramento:

via Giuseppe Giusti, Russi (RA) presso polo sportivo Bruno Bucci Foglio Foglio 27, Mappale 256

RELAZIONE GEOLOGICA

DICEMBRE 2016

Proprietà: Comune di Russi Proponente: CO.GI.Sport

PROPONENTE: NUOVA CO.GI.Sport soc. coop. p.a.

Piazzale Pancrazi 1/A - 48018 Faenza (RA) tel. 0546-621012 - fax. 0546-621012 info@piscinafaenza.com p.IVA 01266680394

PROGETTO ARCHITETTONICO COOPROGETTO

architettura ingegneria servizi

via Severoli, 18 - 48018 Faenza (RA) tel. 0546-29237 - fax. 0546-29261 segreteria@cooprogetto.it

Arch. Alessandro Bucci

collaboratori:

Arch. Enrico Ferraresi Arch. Michele Vasumini Dott. Simona Tartaglia Dott. Enrico Bertozzi

Progettista rete fognaria Coordinatore per la sicurezza Ing. Paolo Ruggeri

Progetto strutturale Ing. Marco Peroni

Progetto impianti elettrici Per. Ind. Marco Samorini collaboratori:

Per. Ind. Andrea Bravaccini

Progetto impianti meccanici Per. Ind. Alberto Schwarz Per. Ind Christian Bassi

Pratiche precedenti

Firme dei tecnici ognuno per le proprie competenze

Presa visione

RELAZIONE GEOLOGICA

OGGETTO: INQUADRAMENTO GEOLOGICO CON CARATTERIZZAZIONE GEOTECNICA DEL SOTTOSUOLO ESEGUITA IN VIA GIUSTI COMUNE DI RUSSI PER IL PROGETTO PRELIMINARE DEL COMPLESSO NATATORIO SCOPERTO.

ANDREATTA Dr. GIANCARLO

Studio di Geologia Tecnica Via XXV Aprile, 140 CASTELBOLOGNESE (RA) Tel. 0546/656362-333/2209149

Geologia del territorio

• Studi preliminari e particolareggiati per PRG e zone di Espansione

Geologia ambientale

- Discariche controllate
- Piani per le Attività Estrattive
- Coltivazione cave
- Difesa del suolo (livellamenti, bonifiche, drenaggi...)

Geologia applicata all'ingegneria

- Meccanica del terreno
- Capacità portante fondazioni e cedimenti
- Stabilità versanti
- Controlli geotecnici "in situ" ed in laboratorio
- Progettazione di bacini idrici

INDICE

- a. PREMESSA, 3
- b. GEOLOGIA E STRATIGRAFIA (cenni), 3
- c. CARATTERISTICHE GEOTECNICHE, 5
- d. CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE, 7
- e. CARATTERISTICHE EDIFICATORIE PRELIMINARI, 9
- f. Valutazione del rischio di liquefazione, 10
- g. CONCLUSIONI, 11

a. PREMESSA

Per incarico del **Comune di Russi (Ra)**, è stata eseguita una relazione geologica preliminare con caratterizzazione geotecnica del sottosuolo sull'area che verrà interessata dalla costruzione del complesso natatorio scoperto sito in via Giusti comune di Russi, come da planimetria allegata, allo scopo di inquadrare alcune caratteristiche geologico-geotecniche e stratigrafiche dei terreni, la profondità di spessori sabbiosi e l'eventuale presenza di falde idriche sospese.

L'indagine è stata espletata tramite rilievo di superficie onde acquisire la natura litologica dei terreni, prove profonde tratte dall'archivio CARG della Regione Emilia-Romagna ed utilizzando prove penetrometriche realizzate nei pressi dell'area interessata.

Di seguito vengono riportati gli elementi geologici ricavati direttamente ed indirettamente sul terreno e le caratteristiche generali di portanza. In allegato vengono indicati i punti di esecuzione delle prove.

Verranno inoltre valutate la categoria di sottosuolo e la condizione topografica alla luce della normativa vigente (Norme Tecniche per le Costruzioni - D.M. del 14.01.2008 e le Istruzioni per l'applicazione delle Norme Tecniche per le Costruzioni della Circolare n° 617 del 02.02.2009 del Ministero delle Infrastrutture).

b. GEOLOGIA E STRATIGRAFIA (cenni)

In superficie i terreni in posto sono prevalentemente limoso-argilloso-sabbiosi di colore nocciola-giallastro, ascrivibili alle **Alluvioni oloceniche della pianura**, con piccole concrezioni calcaree chiamate localmente "calcinelli". In profondità si

riscontrano successioni limoso-sabbiose e argillose, in forma lenticolare, variamente intercalate ad argilla grigiastra. Il contenuto argilloso aumenta con la profondità generalmente a partire da m. 4,00-5,00 rispetto al piano campagna. Detta stratigrafia è influenzata dall'evoluzione della pianura che ha interagito con i vari apparati fluviali (vedi carta geologica con alveo fluviale abbandonato).

La zona insiste in area attualmente destinata ad attività sportive compresa tra costruzioni abitative. Morfologicamente l'area d'influenza risulta sub-pianeggiante con pendenza molto lieve verso Nord-Est da cui risulta senza particolari emergenze dal punto di vista geomorfologico. Le acque di superficie sono regimate da regolare fognatura e da una serie di fossi situati nei campi coltivati adiacenti che confluiscono negli scoli e fossi principali che hanno senso di flusso verso Nord-Est e risultano ben delineati in modo da regolare il deflusso senza pericoli di ristagni.

Dal punto di vista idrogeologico l'area fà parte del bacino padano rappresentato come un imponente serbatoio naturale la cui fonte d'alimentazione è dovuta all'infiltrazione superficiale, dai flussi di subalveo, dai fiumi al loro sbocco in pianura e dagli scambi con il sistema idrografico. Le acque dolci del sistema acquifero della pianura sono localizzate nei depositi del Quaternario e la loro base è da porsi, nella maggior parte dei casi al passaggio tra le formazioni continentali con quelle marine.

Le acque sotterranee fanno parte della facies a bicarbonato calciche con solfati, comprende le acque tipiche ai infiltrazione relativamente recente, indice di ambiente ossidante e quindi normalmente di condizioni di falda libera e vulnerabile; si trovano pertanto nelle zone di ricarica dell'acquifero o in quelle molto prossime, ad elevata permeabilità (vedi sezione stratigrafica allegata).La

profondità della falda freatica è stata accertata tramite la misurazione del livello statico nelle canne piezometriche poste all'interno dei fori penetrometrici correlato con il pozzo adiacente risulta essere a **m. 1,80-2,00** dal piano di campagna, con escursione stagionale, da informazioni assunte, di circa m. 1,00-1,50.

c. CARATTERISTICHE GEOTECNICHE

Al fine di completare l'indagine geotecnica, stabilire preliminarmente le caratteristiche meccaniche dei terreni di fondazione e la presenza e profondità della falda idrica, sono state utilizzate n° 1 prova penetrometrica dinamica leggera e n° 1 prova penetrometrica statica con punta elettrica.

Le quote sono riferite al piano di campagna attuale e l'ubicazione delle prove viene riportata in cartografia allegata ed indicata con un cerchietto rosso (penetrometria dinamica) e blu (prova penetrometrica statica).

Le quote sono riferite al piano di campagna attuale e l'ubicazione delle prove viene riportata in cartografia allegata ed indicata con un cerchietto.

Le caratteristiche della strumentazione dinamica utilizzata per la presente indagine sono riportate qui di seguito:

- Penetrometro dinamico leggero DPL30
- Peso del maglio 30 daN di
- Altezza di caduta del maglio cm. 20
- Peso delle aste di Kg 3,0

I dati, rappresentati come numero di colpi necessari per determinare una penetrazione di **cm. 10**, vengono riportati in allegato. Dalla resistenza alla punta riscontrata nelle prove, applicando la nota "formula degli Olandesi" :

$$Q d = \frac{M^2 * H}{e * (P + M) * A}$$

dove:

M = massa del maglio

H = altezza di caduta del maglio

P = peso delle aste

e = penetrazione della punta per un colpo di maglio cadente da altezza H

A = sezione della punta (cmq. 10).

si ottiene la resistenza dinamica in daN/cmq. Si sono diagrammati i valori dei carichi dinamici corretti con **coefficiente di sicurezza 20** da cui si ottiene il carico ammissibile.

Dalle prove analizzate si deduce che dopo un primo spessore di terreno argillosolimoso rimaneggiato e/o di riporto fino alla profondità di m. 1,00 circa si rinvengono litotipi essenzialmente limoso-argillosi consistenti (Rpm = 9-12 daN/cmq) quindi dotati di una sufficiente resistenza alla punta (Rpm = 7-10 daN/cmq) fino alla profondità di m. 10,00.

Al termine delle prove si è riscontrata presenza di acqua con livello posto a <u>m.</u>

1,80-2,00 di profondità dal piano di campagna attuale.

Stratigrafia ricavata da prove "in situ" correlata con prove penetrometriche profonde eseguite dalla RER (prove n° 240010P508 - 240010C057 - 240010P617 - 240010C056 - 240010C063 - sez. geologica n° 058):

Spessore	LITOLOGIA	Peso Yt	Resistenza	Coesione	Angolo	Modulo
ml.		daN/mc	alla rottura	caratteristica	attrito	di Winkler
			Rpm	ck	caratteristico	daN/cmc
			daN/cmq	daN/cmq	gradi	
0,80-1,00	Terreno	-	-	-	-	
	rimaneggiato					
2,00-2,50	Limo argilloso	1.680-1.700	9-12	0,40-0,55	10°-12°	3-5
1,50-2,00	Sabbia limosa	1.650-1.680	8-10	0	18°-20°	1-2
	sciolta					
11,0-13,0	Argilla limosa	1.720-1.780	8-14	0,45-0,65	12°-14°	4-5
	(con livelli	-	-	-	-	
	sabbiosi)	(1.800-1.820)	(30-70)	(0,10-0,15)	(22°-24°)	(6-7)
fino a m.	Argille limose	1.720-1.740	15-20	0,80-0,90	10°-12°	5-6
35	consistenti					

d. CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Ai fini della valutazione delle azioni sismiche di progetto, viene valutata l'influenza delle condizioni litologiche e morfologiche del sito in esame.

L'inquadramento dei terreni dell'area nelle categorie stratigrafiche del suolo di fondazione deriva dal valore delle Vs30-Nspt,30-Cu,30 (velocità media di propagazione, Numero colpi SPT e coesione media entro i primi 30 metri di profondità). La norma recita che la classificazione può essere effettuata in base ai valori del numero equivalente di colpi della prova penetrometrica dinamica Nspt,30 (Standard Penetration Test) nei terreni prevalentemente a grana grossa e della resistenza non drenata equivalente Cu,30 nei terreni prevalentemente a grana fine.

Dott. Andreatta Giancarlo - GEOLOGO

8

Devono essere quindi determinati i valori di Nspt,30 e Cu,30 nei primi trenta metri

di profondità stabilendo le categorie di sottosuolo corrispondenti ed il sottosuolo

viene riferito alla categoria peggiore.

In questo caso la stratigrafia è stata osservata tramite le prove RER eseguite nelle

vicinanze investigando così lo spessore dei terreni alluvionali e gli spessori

sabbiosi, utilizzando le penetrometrie eseguite sull'area ed una misurazione con

tromografo a stazione singola TROMINO (vedi grafici allegati) investigando così la

velocità di taglio dei terreni che risulta essere pari a 266 m/sec, da cui si ottiene la

categoria del suolo di fondazione:

C. Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina

mediamente consistenti con spessori superiori a m. 30, caratterizzati da un

graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs30compresi tra 180 m/s e 360 m/s (ovvero 15<Nspt30<50 nei

terreni a grana grossa e 0,70<cu30<2,5 daN/cmq nei terreni a grana fina)

Per la valutazione delle condizioni topografiche in questo caso siamo in una

situazione semplice essendo la superficie praticamente suborizzontale senza rilievi

importanti per cui il sito in esame può rientrare nella categoria:

T1. Superficie pianeggiante , pendii e rilievi isolati con inclinazione media <= 15°

da cui deriva un coefficiente di amplificazione topografico pari a st =1,00.

Vedi tabella:

CATEGORIA TOPOGRAFICA	UBICAZIONE	Fattore
	INTERVENTO	topografico St
T1. Superficie pianeggiante, pendii e		1,0
rilievi isolati con inclinazione media i <=		
15°		
T2. Pendii con inclinazione media i > 15°	In corrispondenza della	1,2
	sommità del pendio	
T3. Rilievi con larghezza in cresta molto	In corrispondenza della	1,2
minore che alla base e inclinazione media	cresta del rilievo	
15°<=i<=30°		
T4. Rilievi con larghezza in cresta molto	In corrispondenza della	1,4
minore che alla base e inclinazione media	in comopondenza della	1,7
i >30°	cresta del rilievo	

e. CARATTERISTICHE EDIFICATORIE PRELIMINARI

Sulla base delle risultanze riscontrate sull'area interessata, si deduce la parte più superficiale risulta rimaneggiata e/o scarsamente addensata fino a circa m. 1,00-1,20 di profondità; seguono terreni essenzialmente <u>limoso-sabbiosi-argillosi</u> dotati di medio-bassa consistenza con livelli di limo e sabbia sciolti, con al disotto argille limose e sabbie addensate. Si può quindi procedere alla parametrizzazione del terreno prevedendo fondazioni a plinto/platea.

La valutazione del carico limite rispetto alla rottura localizzata del terreno viene eseguita adottando la Formula del Terzaghi inserendo nel calcolo i parametri geotecnici caratteristici precedentemente elencati, confrontando il valore ottenuto con il carico massimo ricavato direttamente dalle prove penetrometriche. Si può considerare un carico limite compreso tra daN/cmq 2,20-2,50 (resistenza limite del

terreno riferita all'approccio 2 - coefficienti parziali M1; per ottenere la resistenza di progetto Rd, tale valore dovrà essere ridotto con il cofficiente R3 - gr = 2,3 come previsto alla tabella 6.4.I delle NTC2008 per l'approccio 2).

I cedimenti calcolati con i carichi massimi di esercizio ipotizzati pai a **Kmax. = 0,50 daN/cmq** risultano contenuti ed uniformi pari a :

	Boussinesq
Fondazione a Platea (prova n° 1)	cm. 5,531

Se si verificassero localmente delle situazioni <u>litologiche e/o di addensamento</u> <u>discordanti</u> da quelle descritte nella presente relazione, occorrerà avvertire lo scrivente che, dopo la valutazione del caso, deciderà gli opportuni interventi.

f. Valutazione del rischio di liquefazione

Ad una prima valutazione, considerando la presenza di falda idrica contenuta all'interno degli spessori sabbioso-limosi con livello statico posto a m. 1,80-2,00 di profondità, l'addensamento, la composizione litologica limoso-sabbiosa a granulometria non uniforme degli strati interessati dal bulbo di carico e la possibilità di drenaggio dell'acqua di falda attraverso i livelli limoso-sabbiosi, si può escludere la liquefazione dei terreni in esame. In questo caso anche l'incremento dei cedimenti risulterà ininfluente sulla stabilità del manufatto.

g. CONCLUSIONI

Sulla base delle risultanze ottenute con indagini dirette sul terreno e da informazioni assunte, deriva quanto segue:

- Sull'area è stato individuato uno spessore di terreni rimaneggiati cui seguono litotipi in posto limoso-sabbioso-argillosi con livelli sabbiosi sciolti sufficientemente consistenti al disotto dei quali si riscontrano intercalazioni argilloso-limose consistenti e sabbie addensate.
- 2. Si possono adottare fondazioni a platea con piano di posa posto alla profondità di circa m. 1,00 riferita al piano campagna prove (vedi sezione allegata) raggiungibile eventualmente con calcestruzzo "magro" e/o stabilizzato. Si può considerare un carico limite compreso tra daN/cmq 2,00-2,50 (corrispondente alla resistenza limite del terreno riferita all'approccio 2 coefficienti parziali M1; per ottenere la resistenza di progetto Rd, tale valore dovrà essere ridotto con il cofficiente R3 gr = 2,3 come previsto alla tabella 6.4.I delle NTC2008 per l'approccio 2). I cedimenti risultano contenuti ed uniformi.
- 3. Sull'area attualmente <u>insiste falda freatica superficiale</u> con livello statico posto alla profondità di m. 1,80-2,00 rispetto al piano campagna attuale con escursione stagionale di m. 1,00-1,50.
- 4. In caso di evento sismico **non si avrà liquefazione** dei terreni.

5. Ai fini della valutazione delle azioni sismiche di progetto in relazione alla normativa vigente si ottiene la categoria del suolo di fondazione C ed una condizione topografica riconducibile alla categoria T1 con st = 1,0.

Castelbolognese 14.04.2016

Dott.Geol. Andreatta Giancarlo

- CAPACITA' PORTANTE PER FONDAZIONI SUPERFICIALI PLINTO/PLATEA

Dati di progetto : terreno considerato prevalentemente coerente

1) Profondità piano di posa	Df = cm.	180
2) Larghezza fondazione	B = cm.	1000
3) Lunghezza fondazione	L = cm.	3000
4) Coesione efficace	c = daN/cmq	0.35
5) Angolo attrito efficace	P° = gradi	0
6) Peso di volume terreno sopra falda	Y = daN/cmc	0.00168
7) Peso di volume terreno immerso	Y' = daN/cmc	0.00068
8) Profondità falda idrica dal p.c.	Dw = cm.	200

A) Calcolo della pressione di rottura (TERZAGHI-MAJERHOF): terreni

densi o compatti

qr = (1+0,2*B/L)*c*Nc + Y*Df*Nq + (1-0,2*B/L)*Y*B/2*Ny = 2.22 daN/cmq

dove : Nc, Nq e Ny = fattori di capacità portante funzioni dell'angolo di attrito.

La profondità della zona di taglio al disotto della fondazione nella quale si risente l'eventuale presenza della falda idrica è data da :

 $Hw = 0.5 * B * tang(45+P^{\circ}/2) = 500.00$ cm. Df + Hw = 680.00 cm.

Quindi si ha : Df + Hw > Dw In questo caso P°=0 non si

considera l'influenza della falda, da qui: qlimw = qlim = 2.22 daN/cmq

B) Verifica alle prime plasticizzazioni del terreno (carico critico):

I primi fenomeni di plasticizzazione si manifestano in prossimità dei bordi della fondazione con rigonfiamento e rifluimento laterale del terreno.

Il carico critico Poc rappresenta il carico massimo sopportabile oltre cui si producono deformazioni plastiche del suolo sotto il piano di fondazione ed è dato dalla formula di Fròlich :

Poc = Nqcrit.* (Ye * Df + c * cotg P $^{\circ}$) = 6.029 daN/cmq

Il coefficiente Nqcrit. dipende dall'angolo di attrito interno $P^\circ=18$ In questo caso il valore di P° si deduce , seppur in modo approssimato, dalla natura del materiale argilloso assumendo $P^\circ=8^\circ-10^\circ$ per argille grasse, $P^\circ=11^\circ-15^\circ$ per argille normali e $P^\circ=16-20$ per argille limose e/o sabbiose.

Il grado di sicurezza in condizioni di esercizio è definito dal rapporto tra il carico critico Poc ed il carico limite deve essere maggiore di 1. Quindi risulta che :

Fs = Poc / glim = 2.71 glim = 2.22 daN/cmg

C) Calcolo dei cedimenti.

Per una valutazione orientativa dei cedimenti, si è impostato il calcolo considerando la teoria del Boussinesq in relazione ad una fondazione quadrata che sovraccarica il terreno al piano di appoggio :

Kesercizio = ipotizzato o fornito dal progettista = 0.50 daN/cmq

Per il calcolo analitico dei cedimenti si è utilizzata la ben nota relazione : H' = DH * P' * mv

Dove:

H' = Cedimento dello strato

DH = Spessore dello strato

P' = Incremento di carico in corrispondenza dello strato considerato
 mv = coefficiente di compressibilità volumetrica (ricavato dalle correlazioni con natura del terreno e resistenza alla punta del penetrometro)

Si è pertanto suddiviso il substrato in livelli omogenei dal punto di vista della resistenza meccanica,

sulla base delle risultanze delle penetrometrie eseguite. Il calcolo, a tutto vantaggio della sicurezza, è stato eseguito utilizzando i dati della che ha evidenziato i più bassi valori di portanza, con inizio dei conteggi da : - m. dalla quota della prova dal p. c.

prova 1.80

Prova n°	2					
Prof.	Spessore	Profondità Z	Rpm	mv	P'	H'
dal p.c.	strato	mezz. strato				
cm	cm	cm	daN/cmq		daN/cmq	cm
250	70	35	12	0.0131	0.500	0.458
600	350	245	8	0.0147	0.464	2.390
900	300	570	11	0.0133	0.315	1.263
1200	300	870	8	0.0147	0.205	0.902
1500	300	1170	14	0.0126	0.137	0.518
Totale cedimen	iti calcolati				H' = cm.	5.531

RUSSI - COOPROGETTO, VIA DELLO SPORT - PISCINA SCOPERTA

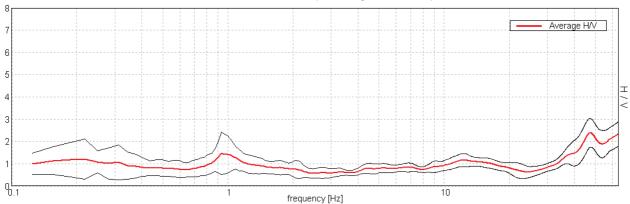
Strumento: TRZ-0033/01-09

Inizio registrazione: 14/04/16 09:58:28 Fine registrazione: 14/04/16 10:18:28

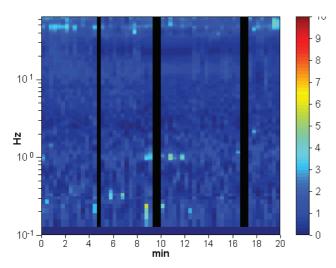
Nomi canali: NORTH SOUTH; EAST WEST; UP DOWN

Dato GPS non disponibile

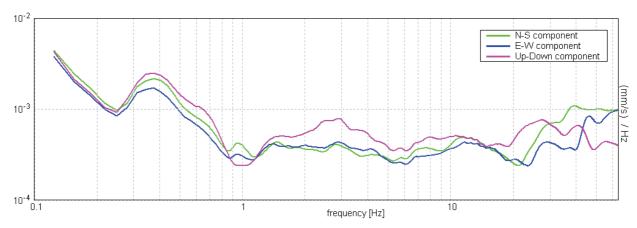
Durata registrazione: 0h20'00". Analizzato 92% tracciato (selezione manuale)

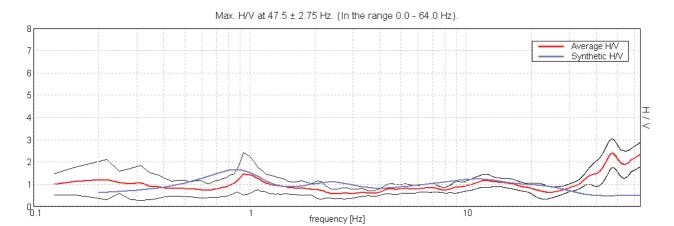

Freq. campionamento: 128 Hz Lunghezza finestre: 20 s

Tipo di lisciamento: Triangular window

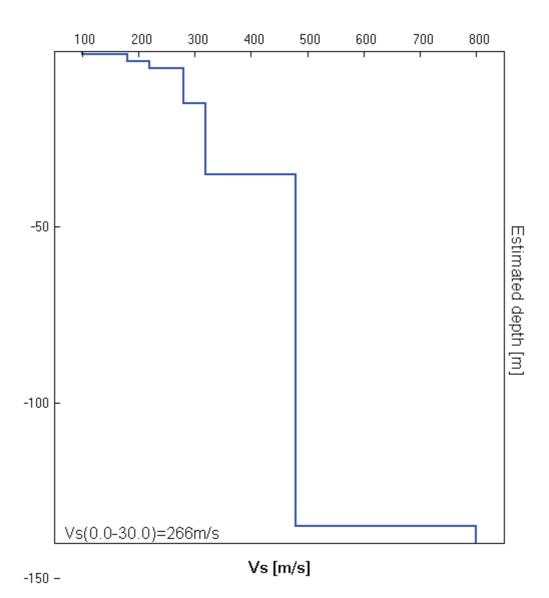

Lisciamento: 10%

RAPPORTO SPETTRALE ORIZZONTALE SU VERTICALE


Max. H/V at 47.5 ± 2.75 Hz. (In the range 0.0 - 64.0 Hz).


SERIE TEMPORALE H/V

SPETTRI DELLE SINGOLE COMPONENTI



H/V SPERIMENTALE vs. H/V SINTETICO

Profondità alla base dello strato [m]	Spessore [m]	Vs [m/s]	Rapporto di Poisson
1.00	1.00	100	0.25
3.00	2.00	180	0.30
5.00	2.00	220	0.30
15.00	10.00	280	0.30
35.00	20.00	320	0.35
135.00	100.00	480	0.35
inf.	inf.	800	0.35

Vs(0.0-30.0)=266m/s

[Secondo le linee guida SESAME, 2005. Si raccomanda di leggere attentamente il manuale di *Grilla* prima di interpretare la tabella seguente].

Picco H/V a 47.5 ± 2.75 Hz (nell'intervallo 0.0 - 64.0 Hz).

Criteri per una curva H/V affidabile [Tutti 3 dovrebbero risultare soddisfatti]						
f ₀ > 10 / L _w	47.50 > 0.50	OK				
$n_c(f_0) > 200$	52250.0 > 200	OK				
$\sigma_A(f) < 2 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 > 0.5Hz$ $\sigma_A(f) < 3 \text{ per } 0.5f_0 < f < 2f_0 \text{ se } f_0 < 0.5Hz$	Superato 0 volte su 1289	OK				
-	er un picco H/V chiaro 6 dovrebbero essere soddisfatti]					
[Almeno 5 su (Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	•	OK				
[Almeno 5 su	6 dovrebbero essere soddisfatti]	OK	NO			
[Almeno 5 su (Esiste f in $[f_0/4, f_0] A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti]	OK OK	NO			
[Almeno 5 su (Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$	6 dovrebbero essere soddisfatti] 35.156 Hz		NO			
[Almeno 5 su Esiste f in $[f_0/4, f_0] \mid A_{H/V}(f) < A_0 / 2$ Esiste f in $[f_0, 4f_0] \mid A_{H/V}(f) < A_0 / 2$ $A_0 > 2$	6 dovrebbero essere soddisfatti] 35.156 Hz 2.39 > 2	OK	NO			

L _w	lunghezza della finestra
n _w	numero di finestre usate nell'analisi
$n_c = L_w n_w f_0$	numero di cicli significativi
f	frequenza attuale
f_0	frequenza del picco H/V
σ_{f}	deviazione standard della frequenza del picco H/V
$\varepsilon(f_0)$	valore di soglia per la condizione di stabilità $\sigma_f < \epsilon(f_0)$
A_0	ampiezza della curva H/V alla frequenza f ₀
$A_{H/V}(f)$	ampiezza della curva H/V alla frequenza f
f ⁻	frequenza tra $f_0/4$ e f_0 alla quale $A_{H/V}(f_0^-) < A_0/2$
f ⁺	frequenza tra f_0 e $4f_0$ alla quale $A_{H/V}(f^+) < A_0/2$
$\sigma_{A}(f)$	deviazione standard di $A_{H/V}(f)$, $\sigma_A(f)$ è il fattore per il quale la curva $A_{H/V}(f)$ media deve
	essere moltiplicata o divisa
$\sigma_{logH/V}(f)$	deviazione standard della funzione log A _{H/V} (f)
$\theta(f_0)$	valore di soglia per la condizione di stabilità $\sigma_A(f) < \theta(f_0)$

Valori di soglia per $\sigma_f e \ \sigma_A(f_0)$							
Intervallo di freq. [Hz] < 0.2 0.2 - 0.5 0.5 - 1.0 1.0 - 2.0 > 2.0							
$\varepsilon(f_0)$ [Hz]	0.25 f ₀	0.2 f ₀	0.15 f ₀	0.10 f ₀	0.05 f ₀		
$\theta(f_0)$ per $\sigma_A(f_0)$	3.0	2.5	2.0	1.78	1.58		
$\log \theta(f_0) \text{ per } \sigma_{\log H/V}(f_0)$	0.48	0.40	0.30	0.25	0.20		

CARTA IDROGEOLOGICA E STRUTTURALE (da carg E/R)

Scala 1:25.000

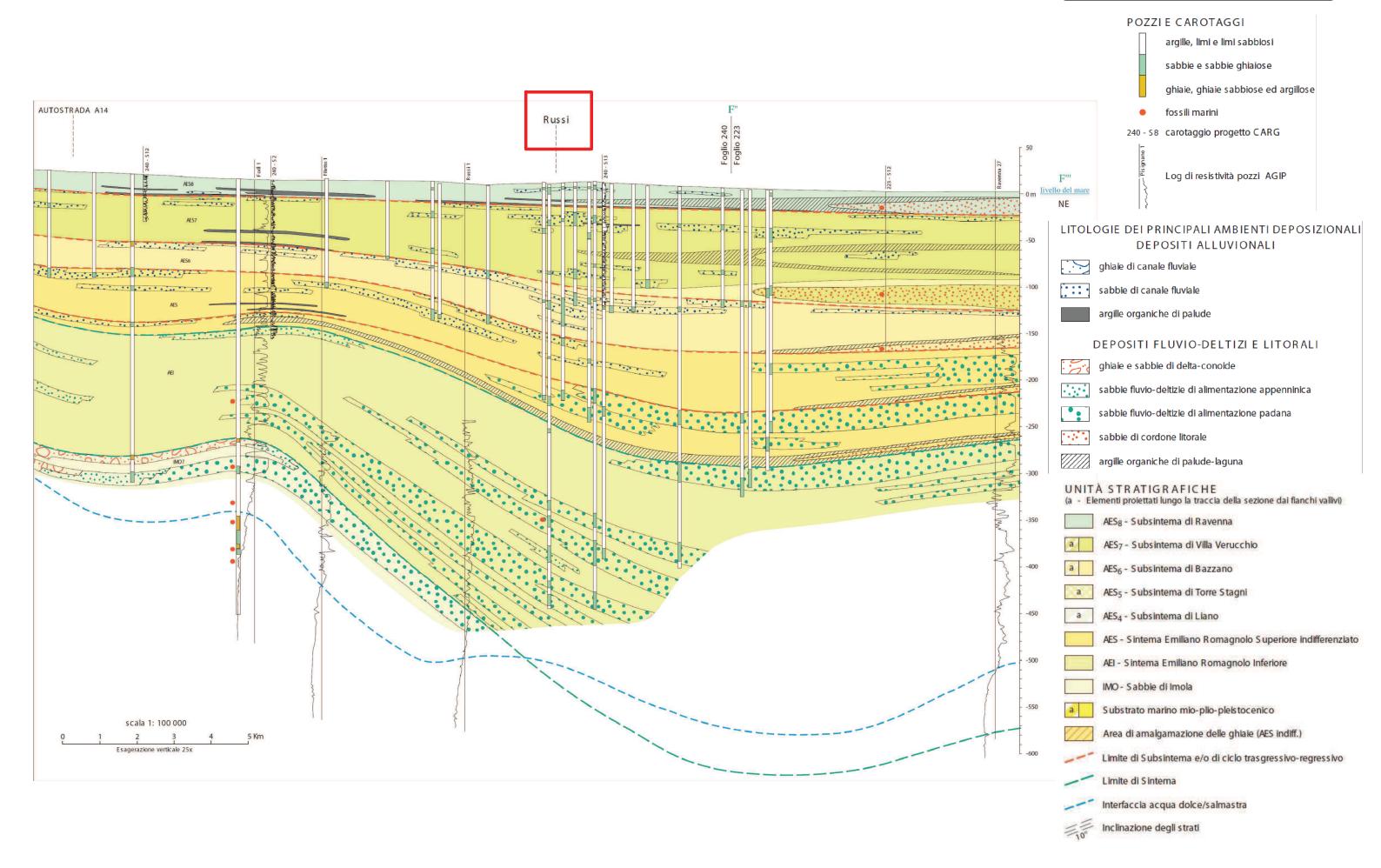
Area d'intervento

Deposito di limo argilloso di piana alluvionale

Deposito di sabbia limosa di piana alluvionale

Sovrascorrimento profondo post-tortoniano dedotto

Isobata della base del pliocene



Traccia di alveo fluviale abbandonato certa

Ventaglio di esondazione

SEZIONE STRATIGRAFICA N° 058 (da Progetto CARG)

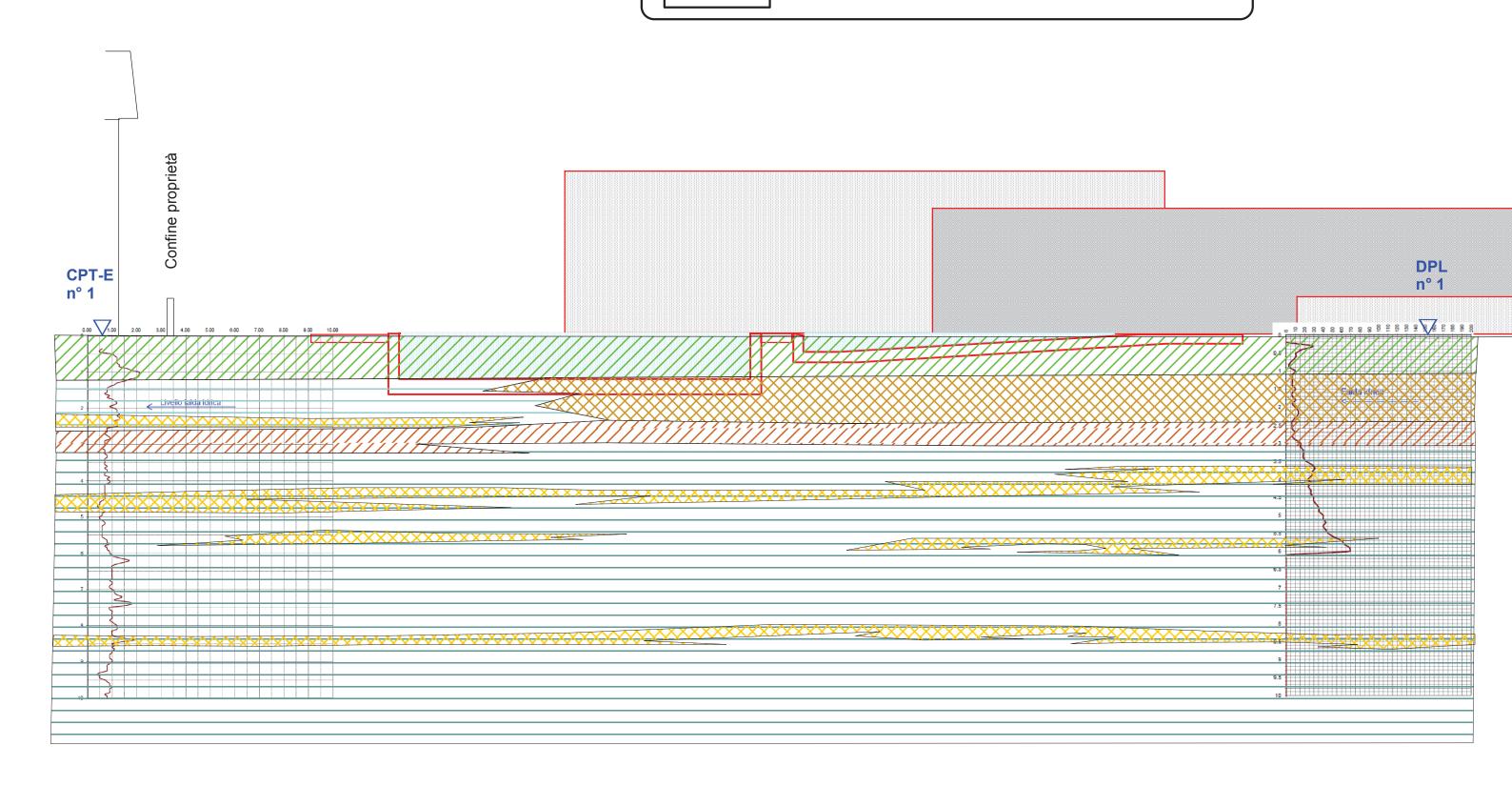
FONDAZIONE A PLINTO/PLATEA:

Profondità piano di posa fondazioni posto a ml. 1,60-1,80 circa rispetto al piano campagna prove (raggiungibile eventualmente con calcestruzzo "magro")

LEGENDA:

Strato rimaneggiato e/o di riporto

Limo argilloso con intercalazioni sabbiose nocciola-grigiastre


Sabbia limosa e limo sabbioso giallastro con livelletti argillosi

Argilla limosa grigio nocciola con livelli ossidati giallo-rossastri

Argilla grigiastra consistente con intercalazioni limoso-sabbiose

SEZIONE GEOLOGICA

Scala 1:100

STRATIGRAFIA n° 1

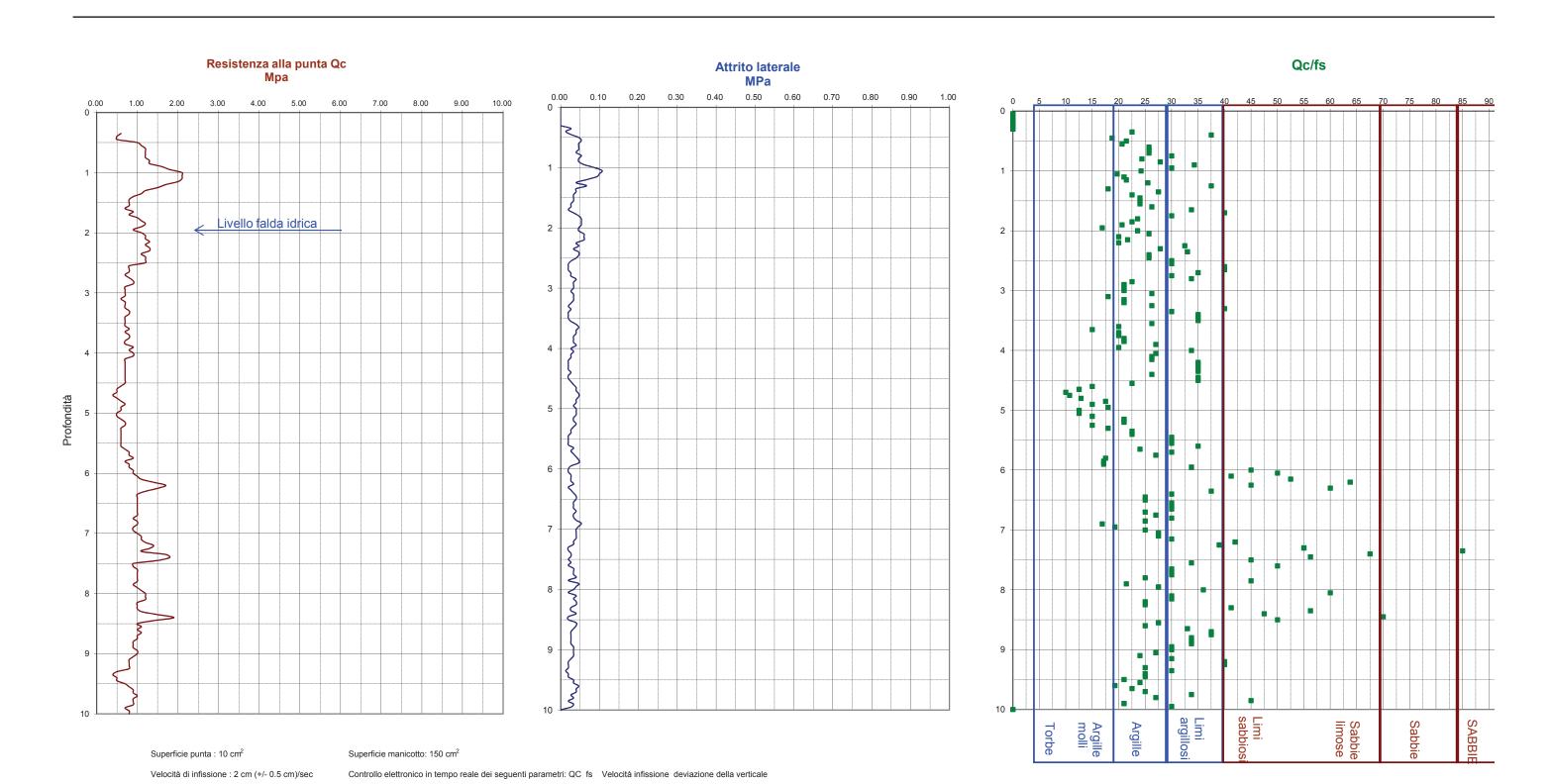
Committente: Comune Data: 01.09.1986

Località: Via Cerchia - Mattatoio

Comune: RUSSI (Ra)

Attrezzatura: Carotaggio POZZO ACQUA

Dott. ANDREATTA GIANCARLO GEOLOGO Via XXV Aprile, 140 - CASTEL BOLOGNESE (Ra) Via I° Maggio, 85/c - IMOLA (Bo) Tel. 0546/656362 - cell. 333/2209149


PROVA penetrometrica statica C.P.T.E. n°

Punta elettrica - acquisizione continua controllata in tempo reale (A.S.T.M. D 5778

Committente: Archivio

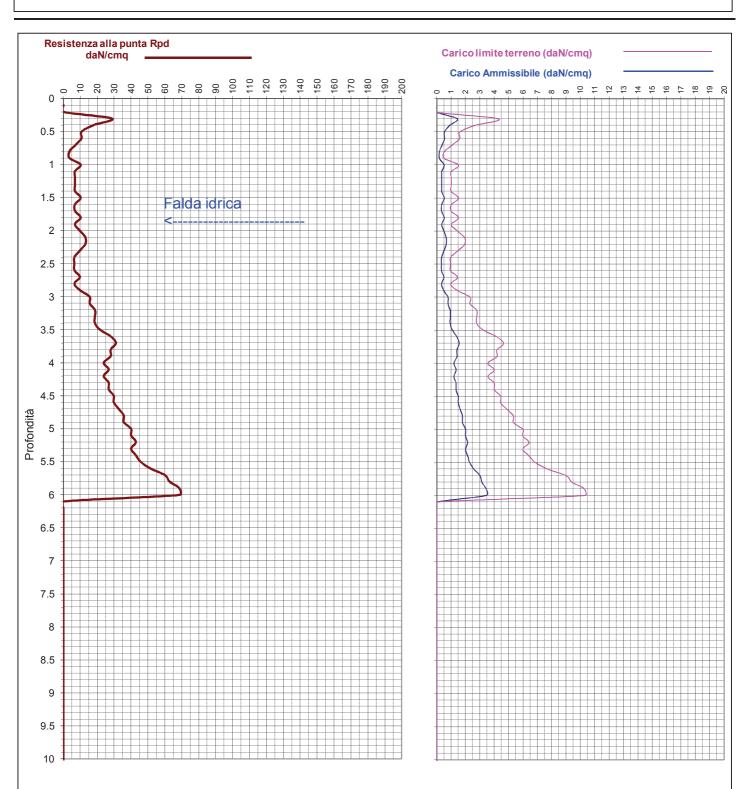
Località: via Molinaccio
Data: 14.04.2016

Profondità falda dal p.c. prova: 2.00 ml.

PARAI Località		TECNICI CPT-E naccio	N° 1	Committente :	Archivio		Data :	14.04.2016	
Prof. ml.	Rp RI daN/cmq	STRATIGRAFIA BEGEMANN	Colonna Falda stratigrafica idrica	ADDENSAMENTO (sabbia) CONSISTENZA (argilla)	Gamma't daN/mc	Sigma'v daN/cmq	Densità ed indice consistenza	Angolo Attrito e coesione	K Wink.
U.U5 U.15 U.15 U.2	darvorriq	DEGEMANN	Strangfalloa Idiloa	JOHOIOTENEA (argina)	darvino	darwong	maroc consistenza	- Coosione	
U.25 U.3 U.35 U.4 U.45	5 U.2/2	Argilia ilmosa Liivio Sabbioso Argilia	::::::::::::::::::::::::::::::::::::::	SCARSAMENTE CONSISTENTE SCARSAMENTE AUDENSATA SCARSAMENTE CONSISTENTE	/ /מו: טטפו טפסו	U.UU8 U.U10 U.U24	บ. าอ Fiuiqo-piastica To % บ. เอ Fiuiqo-piastica	U.38647∠ dain/cmq ∠8 U.3∠1634 dain/ciiiq	1.5 U.0 1.5
CC.U CC.U O.U CO.U	10 U.4/0 11 U.544 12 U.4/0 12 U.4/0	Arğılıa ilmosa Argılla Argılla ilmosa Arğılla ilmosa		Mediamente consistente Mediamente consistente Mediamente consistente Mediamente consistente	1/53 1/6/ 1/80 1/80	U.U33 U.U42 U.U31 U.U0U	U.31 Molie-piastica U.43 Molie-piastica U.37 Molie-piastica U.37 Molie-piastica U.37 Molie-piastica	U.743049 QAIV.CMQ U.707870 QAIV.CMQ U.7171WB QAIV.CMQ U.77180 QAIV.CMQ U.77180 QAIV.CMQ U.77180 QAIV.CMQ	2.5 3.5 3.0 3.0
0.7 0.75 0.0 0.0 0.0	12 U.4/0 12 U.4/0 12 U.4/0 12 U.4/0 12 U.4/0 13 U.544 13 U.4/0	Limo argilloso Argilla ilmosa		inediamente consistente inediamente consistente inediamente consistente inediamente consistente	1/00 1/80 1/92 1/92	0.000 0.077 080.0 080.0	U.37 IVIOIIE-piastica U.37 IVIOIIE-piastica U.43 IVIOIIE-piastica U.43 IVIOIIE-piastica 21 %	0.771437 dain/cmq 0.835001 dain/cmq 0.835438 dain/cmq	1.5 U.0 1.5 2.5 3.0 3.0 3.0 3.0 3.5 4.2
0.9 0.95 1 1.05 1.1	10 U.470 10 U.012 21 U.884 21 1.088 21 1.020		::=::=::=:: 	FOCO ADDENSA IA CONSISTENTE (COMPATIA) CONSISTENTE (COMPATIA) CONSISTENTE (COMPATIA) LONSISTENTE (COMPATIA)	1000 104 1 1804 1804 1804	U.1U3 U.11Z U.1ZZ U.131 U.14U	U.DT MASTICA U.DT MASTICA U.DT MASTICA U.DT MASTICA U.DT MASTICA	31 1.109/01 dain/cmq 1.19//32 dain/cmq 1.19/325 dain/cmq 1.19/318 dain/cmq	5.U 0.U 0.U 0.U
1.15 1.2 02.1 1.3	20 U.952 17 U.00U 15 U.4U8	Arğılıa IIMOSA Algılıa IIMOSA LIMO SABBIOSO		Consistente (compatta) Consistente (compatta) Consistente (compatta) PUCO ADDENSATA Mediamente consistente	1857 1032 1000 1780	U.15U U.159 U.167 U.176	U.D I MASTICA U.DD MASTICA LI MOILE-DIASTICA U.D IVIDIIE-DIASTICA	1.232541 dain/cmq 1.046957 dain/cmq 31 0.768989 dain/cmq	5.0 4.0 4.2 4.0 3.0 2.5 2.0
1.35 1.4 1.45 1.5 1.55	71 0.408 9 0.408	Argilia Limo argilioso Argilia limosa Argilia limosa Argilia limosa		Mediamente consistente Mediamente consistente Scarsamente consistente Scarsamente consistente	1/0/ 1/3/ 1/20 1/20	U.185 U.193 U.2U2 U.21U	0.37 Mone-piastica 0.31 Mone-piastica 0.25 Fiuno-piastica 0.25 Fiuno-piastica 0.25 Fiuno-piastica	U.704322 GaIN/CMQ U.575212 GAIN/CMQ U.51032 GAIN/CMQ U.510338 GAIN/CMQ U.510124 GAIN/CMQ	3.U 2.U 2.U
1.05 1.05 1.7 1.7	8 U.34U 1 U.212 9 U.212 0 U.204 1U U.34U	Argilia ilmosa Argilia ilmosa Limo argilioso Limo argilioso Limo argilioso Limo argilioso		Scarsamente consistente Scarsamente consistente Mediamente consistente SCARSAMIENTE AUDENSATA Mediamente consistente	1/20 1/00 1/3/ 1000 1/03	U.219 U.228 U.230 U.244 U.233	U.15 Fluido-piastica U.31 Molle-piastica	U.949400 GAIN/CMQ U.974143 GAIN/CMQ 29 U.038179 GAIN/CMQ U.702400 GAIN/CMQ	2.0 1.5 2.5 U.0
1.0 00.1 1.9 1.9 1.90	11 U.4/0 12 U.544 11 U.544	Limo argilioso Argilia ilmosa Argilia ilmosa Argilia Argilia		iviediamente consistente wediamente consistente iviediamente consistente iviediamente consistente	1/0/ 1/8U 1/0/	U.202 U.2/1 U.2/9 U.2/9	U.31 Mone-piastica U.37 Mone-piastica U.37 Mone-piastica U.43 Mone-piastica U.43 Mone-piastica U.57 Mone-piastica	0.700031 dain/cmq 0.701905 dain/cmq 0.572055 dain/cilid	2.U 2.U 1.0 2.0 0.0 2.0 3.U 3.U 3.U 3.U
∠ ∠.U5 ∠.1 ∠.15	11 U.4/0 12 U.4/0 12 U.012 13 U.012	Argilia limosa Argilia limosa Argilia Argilia limosa		Mediamente consistente Mediamente consistente Mediamente consistente Mediamente consistente	/0/ /8U /8U /92	U.292 U.290 U.3UU U.3U4	U.37 MONE-PIASTICA U.37 MONE-PIASTICA U.5 MONE-PIASTICA U.45 MONE-PIASTICA	0.701003 gan/cmd 0.700003 gan/cmd 0.70000 gan/cmd 0.800204 gan/cmd 0.70071 gan/cmd	3.U 3.U 4.U 3.D 3.D 3.D 3.U 3.U 3.U
Z.Z Z.Z Z.3 Z.30 Z.4	13 U.408 13 U.470 11 U.340	Limo argilioso Limo argilioso Limo argilioso		inediamente consistente inediamente consistente inediamente consistente inediamente consistente inediamente consistente	10U 192 192 101 10U	U.3U0 U.312 U.313 U.319 U.323	U.3 Mone-piastica U.43 Mone-piastica U.43 Mone-piastica U.37 Mone-piastica U.37 Mone-piastica	0.76571 dain/cmq 0.830059 dain/cmq 0.82996 dain/cmq 0.700971 dain/cmq 0.705321 dain/cmq	4.0 3.0 3.0 3.0
∠.45 ∠.5 ∠.55 ∠.05	12 1 0.4/0	Argina iiriosa		mediamente consistente mediamente consistente Scarsamente consistente SCAKSAMENTE AUDENSATA	/ 0U / 8U / 2U 55U	U.321 U.331 U.335 U.337	U.37 iviolie-piastica U.37 iviolie-piastica U.25 Fiulido-piastica To %	0.705224 dain/cmq 0.705127 dain/cmq 0.50725 dain/cmq 29	3.U 3.U 2.U U.ŏ U.ŏ U.ŏ
2.05 2.1 2.15 2.0	/ 0.704	LIIVIO SABBIUSU LIIVIO SABBIUSO LIMO argilioso LIMO argilioso Argilia limosa Argilia limosa	::=::=::=: ::=:: :=:=:=: ::=::=: 	SCARSAMENTE ADDENSATA SCARSAMENTE ADDENSATA SCARSAMENTE CONSISTENTE MECIAMENTE CONSISTENTE	55U 5UU 12U 131	U.34U U.343 U.340 U.35U	16 % 10 % 0.25 Fluido-plastica 0.31 Molie-plastica	29 20 0.506962 dain/cmq 0.571317 dain/cmq	U.0 U.0 Z.U Z.S
2,55 2,5 3 3,05	/ I U.34U	Argilia ilmosa Argilia ilmosa Argilia ilmosa Argilia ilmosa Limo argilioso		Mediamente consistente Scarsamente consistente Scarsamente consistente Scarsamente consistente Scarsamente consistente	/3/ /UU /UU /UU /UU	U.354 U.357 U.301 U.304	U.31 Mone-piastica U.15 Fiundo-piastica U.15 Fiundo-piastica U.15 Fiundo-piastica U.15 Fiundo-piastica	U.5/1225 GaIN/CMQ U.442244 GAIN/CMQ U.442157 GAIN/CMQ U.44207 GAIN/CMQ U.441985 GAIN/CMQ	2.5 1.5 1.5
3.15 3.15 3.2 3.25	1 U.212 b U.34U 1 U.34U 1 U.34U 1 U.212	Argilia Argilia Ilmosa Alullia Ilmosa		Scarsamente consistente Scarsamente consistente Scarsamente consistente Scarsamente consistente Scarsamente consistente	6// /UU /UU /UU	U.308 U.371 U.374 U.370 U.381	U.25 Fluido-piastica U.25 Fluido-piastica U.15 Fluido-piastica U.15 Fluido-piastica U.15 Fluido-piastica	0.441812 dain/cmq 0.441812 dain/cmq 0.441812 dain/cmq 0.441820 dain/cmq 0.441838 dain/cmq	2.0 2.5 1.5 1.5 1.5 1.5 2.0 1.5 1.0 0.8 2.0 0.0
3.3 3.35 3.4 3. 4 5	8 U.2U4 8 U.212 1 U.2U4 1 U.2U4	FIIMO SABBIOSO FIIMO SABBIOSO FIIMO SABBIOSO		SCARSAMENTE ADDENSATA SCARSAMENTE ADDENSATA SCARSAMENTE ADDENSATA	55U 7.2U 5UU 5UU	U.364 U.366 U.390 U.393	18 % U.25 Fiulao-plastica 10 % 10 %	29 υ.ουο927 ααιν/cmq 26 20	U.8 2.U U.0 U.0
3.5 3.55 3.6 3.65 3.7	1 U.2U4 1 U.212 8 U.4U8 1 U.410 0 U.4U0		::=::=::=:: ::::::::::::::::::::::::::	SCARSAMENTE AUDENSATA SCARSAMENTE CONSISTENTE MECIAMENTE CONSISTENTE MECIAMENTE CONSISTENTE MECIAMENTE CONSISTENTE	500 700 720 700 720	U.393 U.399 U.4U2 U.4U0 U.4 IU	10 % U. 15 Fiuido-piastica U.31 Molle-piastica U.43 Molle-piastica U.51 Molle-piastica	28 U.441200 GAIN/CMQ U.5U5053 GAIN/CMQ U.441U3 GAIN/CMQ U.5U5507 GAIN/CMQ	U.0 1.5 2.5 3.5 2.5
3./5 3.8 3.85 3.85	8 U.408 1 U.340 1 U.340 1 U.340 9 U.340	Argilia Argilia limosa Argilia limosa Limo argilioso		mediamente consistente Scarsamente consistente Scarsamente consistente mediamente consistente mediamente consistente	/20 /00 /00 /3/	U.413 U.417 U.420 U.424	U.51 Molie-piastica U.15 Fiuido-piastica U.15 Fiuido-piastica U.15 Molie-piastica U.51 Molie-piastica	0.50507 data/cmq 0.505297 data/cmq 0.440764 data/cmq 0.440677 data/cmq 0.505478 data/cmq	2.0 2.0 1.0 1.0 2.0 2.0
3.95 4 4.05 4.1	0 U.4U0 9 U.212 9 U.34U 1 U.212	Argilia Limo argilioso Limo argilioso Limo argilioso		iviediamente consistente iviediamente consistente iviediamente consistente Scarsamente consistente	12U 131 131 1UU	U.421 U.431 U.435 U.438	0.51 Mone-piastica 0.31 Mone-piastica 0.31 Mone-piastica 0.15 Fiuldo-piastica 0.15 Fiuldo-piastica	0.504942 0ain/cmq 0.509297 0ain/cmq 0.509205 0ain/cmq 0.440225 0ain/cmq	2.5
4.15 4.2 4.25 4.3	/ U.2/2 / U.2U4 / U.2U4 / U.2U4 / U.2U4	LIMO ARBIUSU LIMU SABBIUSU LIMU SABBIUSU LIMU SABBIUSU		SCARSAMENTE AUJENSATA SUAKSAMENTE AUJENSATA SUAKSAMENTE AUJENSATA SUAKSAMENTE AUJENSATA SUAKSAMENTE AUJENSATA	000 000 000 000	U.442 U.444 U.447 U.449 U.452	10 % 10 % 10 %	0.440138 dain/cmq 20 28 28	1.5 1.5 0.0 0.0 0.0
4.35 4.4 4.45 4.5 4.55	1 0.204 1 0.214 1 0.204 1 0.204 0 0.212	LIMO SABBIOSO LIMO SABBIOSO LIMO SABBIOSO LIMO SABBIOSO Argilia ilmosa		SCARSAMIENTE ADDENSATA SCARSAMIENTE ADDENSATA SUARSAMIENTE ADDENSATA SUARSAMIENTE ADDENSATA SCARSAMIENTE ADDENSATA SCARSAMIENTE ADDENSATA	000 000 000 010	U.432 0C4.U 0C4.U U.40U U.404	10 % U. 15 Fiuloo-plastica 10 % 10 % U. 15 Fiuloo-plastica	28 U.4398U2 dain/cmq 20 28 U.375147 dain/cmq	0.U 0.U 0.U
4.0 4.05 4.7 4.75	5 U.34U 5 U.4U8	Arğılla organica Argilla organica Algılla organica		iviediamente consistente wediamente consistente ocarsamente consistente wediamente consistente	บติต บติต อา ต บติต	U.407 U.47U U.473 U.470	บ.ชา เพิ่มเต-ที่เสรินตล บ.ชา เพิ่มเต-ที่เสรินตล บ.ชว ที่เมนิบ-ที่เสรินตล บ.ชา เพิ่มเต-ที่เสรินตล	0.510619 dain/cmd 0.510558 dain/cmd 0.246015 dain/cmd 0.510581 dain/cmd	1.5 2.5 2.0 2.0 2.0
4.8 4.85 4.9 4.95	b 0.408	Argilia organica Argilia organica Argilia organica Argilia organica Argilia organica	1	Mediamente consistente Scarsamente consistente Mediamente consistente Scarsamente consistente Mediamente consistente	01/0 11/0 11/0 UCO	U.48U U.483 U.487 U.49U U.493	U.37 Molie-piastica U.25 Fiuido-piastica U.37 Molie-piastica U.25 Fiuido-piastica U.21 Molie-piastica	U.3/4/43 dain/cmd U.439 IU3 dain/cmd U.3/45/2 dain/cmd U.3/4400 dain/cmd U.3U990 dain/cmd	3.U 2.U 3.U
5.U5 5.1 5.15 5.2	5 U.4U8 b U.4U8 l U.34U l U.34U	Argilia organica Argilia organica Argilia organica Argilia ilmosa Argilia		inediamente consistente inediamente consistente scarsamente consistente scarsamente consistente	000 07/ 00/ 00/	U.497 U.00U U.5U4 U.5U7	0.31 Mone-prastica 0.31 Mone-prastica 0.31 Mone-prastica 0.31 Mone-prastica 0.15 Fluido-prastica 0.25 Fluido-prastica	0.30988 dain/cmq 0.374242 dain/cmq 0.438802 dain/cmq 0.438815 dain/cmq	2.5 2.5 3.0 1.5 2.0
5.∠5 5.3 5.35 5.4	b U.4U8 b U.34U b U.212 b U.212	Argilia organica Argilia Argilia ilmosa Argilia ilmosa		iviediamente consistente Scarsamente consistente Scarsamente consistente Scarsamente consistente)) ())) ())) ()	U.51U U.514 U.517 U.521	บ.37 เท่ดแย-piastica บ.25 Fiuldo-piastica บ.15 Fiuldo-piastica บ.15 Fiuldo-piastica	0.373984 dain/cmq 0.3739 dain/cmq 0.373815 dain/cmq 0.373731 dain/cmq	3.U 2.U 1.5 1.5
5.45 5.55 5.05 5.05	0 U.2U4 0 U.2U4 0 U.2U4 1 U.2U4 7 U.2U4 0 U.34U	LIITIO AIGIIIOSO LIMO AIGIIIOSO LIMO SABBIUSO AIGIIIA IIMOSA		SCARSAMENTE CONSISTENTE SCARSAMENTE CONSISTENTE SCARSAMENTE AUDENSATA SCARSAMENTE AUDENSATA SCARSAMENTE CONSISTENTE	0// 0// 0// 5UU /2U	U.524 U.521 U.531 U.533 U.531	U. 15 Fidiqu-piastica U. 15 Fidiqu-piastica U. 15 Fidiqu-piastica 16 % U.25 Fidiqu-piastica	U.373047 UAIN/CITIQ U.373003 GAIN/CITIQ U.373479 GAIN/CITIQ 25 U.5U2221 GAIN/CITIQ	1.5 1.5 U.0
0.7 0.75 0.8 0.80	0 U.212 9 U.34U 1 U.4U8 6 U.410	LIITIO AIGIIIOSO LIMO AIGIIIOSO AIGIIIA AIGIIIA		Scarsamente consistente scarsamente consistente wedamente consistente wedamente consistente	12U 131 1UU 12U	U.54U U.544 U.540 U.551	บ.25 Fiuluo-piastica บ.31 Molie-piastica บ.25 Fiuluo-piastica บ.31 Molie-piastica	0.502131 dain/cind 0.506486 dain/cmq 0.437506 dain/cmq 0.501863 dain/cmq	2.0 2.0 2.0 2.0 2.0 2.0 2.0
5.9 5.95 0 0.05 0.1	ö U.4/0 y U.2/2 y U.204 10 U.204 11 U.2/2	AIĞIIIA LIITO AIGIIIOSO LIIVO SABBIUSO LIIVO SABBIUSO LIIVO SABBIUSO		MEGIAMENTE CONSISTENTE MEGIAMIENTE CONSISTENTE SUARSAMIENTE AUDENSATA SUARSAMIENTE AUDENSATA	72U 737 33U 33U 33U	U.000 U.000 U.001 U.004 U.007	U.51 Molle-plastica U.51 Molle-plastica To % To % To %	0.501773 dain/cmd 0.500120 dain/cmd 29 29 30	υ.δ υ.δ
0.15 0.2 0.25 0.3	14 U.212 11 U.212 15 U.34U 12 U.2U4	SARRIA FIMOSA SARRIA FIMOSA SARRIA FIMOSA		FUCU ADDENSA IA	บบช บบช บบช บติ <i>ต</i>	0.507 0.075 0.075 0.075 0.075	23 % 21 % 21 % 23 % 19 %	31 31 31 30	1.5 1.9 2.2 1.9 1.5
0.35 0.4 0.45 0.5	10 U.2/2 10 U.34U 10 U.4U0 10 U.4U8	LIMO SABBIOSO Argina innosa Argina innosa	::=::=::=: :::::::::::::::::::::::::::	POCO ADDENSATA MEDIAMENTE CONSISTENTE MEDIAMENTE CONSISTENTE MEDIAMENTE CONSISTENTE	55U 753 753 753	0.561 0.565 0.565 0.565	19 % U.31 Mone-piastica U.31 Mone-piastica U.31 Mone-piastica U.31 Mone-piastica	0.029728 dain/cmq 0.029022 dain/cmq 0.029022 dain/cmq	1.5 2.5
0.00 0.00 0.00 0.7 0.75	10	Limo argilioso Limo argilioso Limo argilioso Argilia limosa Limo argilioso		Mediamente consistente Mediamente consistente Mediamente consistente Mediamente consistente Mediamente consistente	/53 /53 /53 /53 /3/	U.090 U.0UU U.0U4 U.0U0 U.0U1	U.31 Mone-piastica U.31 Mone-piastica U.31 Mone-piastica U.31 Mone-piastica U.31 Mone-piastica	0.029034 GaIN/CMQ U.029041 GAIN/CMQ U.029041 GAIN/CMQ U.0301010 GCCC2000 U.004010 GAIN/CMQ	2.5 2.5 2.5 2.5 2.5
0.0 0.0 0.0 0.0 0.0 0.0	10 U.34U 10 U.4U8 9 U.544 9 U.470	Limo arğilloso Argilla limosa Argilla Algilla		iviediamente consistente wediamente consistente iviediamente consistente iviediamente consistente	/53 /53 /3/	0.015 0.019 0.022 0.020	U.31 Molle-plastica U.31 Molle-plastica U.37 Molle-plastica U.37 Molle-plastica	0.029108 dain/cmq 0.029074 dain/cmq 0.004030 dain/cmq 0.004444 dain/cmq	2.5 2.5 2.0 3.0 3.0
1 CU.1 I.1 CI.1	10 U.4U8 11 U.4U8 11 U.4U8 12 U.4U8	Argilia limosa Limo argilioso Limo argilioso Limo argilioso		Mediamente consistente Mediamente consistente Mediamente consistente Mediamente consistente	/53 /6/ /6/	U.03U U.034 U.038 U.042	0.31 Molie-plastica 0.37 Molie-plastica 0.37 Molie-plastica 0.37 Molie-plastica	0.028/9/ gain/cmg 0.093/149 gain/cmg 0.75/403 gain/cmg	2.5 3.0 3.0 3.0
7.2 7.3 7.3 7.4	14 U.34U 13 U.34U 11 U.2U4 11 U.2U4 16 U.212	SARRIA FINE SARRIA-GHIAIA PINO SARRIOSO FINO SARRIOSO	0: 0: 0: 0: 0: 0:	FUCU ADDENSATA SUAKSAMENTE ADDENSATA FUCU ADDENSATA FUCU ADDENSATA	000 000 000 000 000	U.040 U.048 U.05U U.053 U.055	23 70 23 70 18 70 19 70 23 70	31 29 30 31	1.9 1.9 0.8 1.5 1.9
7.45 7.5 7.5 7.5 0.1	10 U.212 9 U.204 9 U.212 10 U.204	SABBIA LIWUSA LIMO argiiloso SABBIA LIWUSA	111111111111111111111111111111111111111	SCAKSAMEN I E ADDENSA I A SCAKSAMEN I E ADDENSA I A POUCO ADDENSA I A POUCO ADDENSA I A	000 000 131 000	200.U 200.U 200.U 800.U	∠3 % 18 % ∪.31 Molle-plastica 18 %	3 I 29 U.563467 дапуста 29	1.8 U.8 2.5 U.8 2.5
00.1 1.1 01.1 0.1	10 0.340 10 0.408	Limo arğilloso Limo argilloso Argilla ilmosa		Mediamente consistente Mediamente consistente Mediamente consistente Mediamente consistente	/53 /53 /53	U.072 U.070 U.00U U.003	U.31 Molie-piastica U.31 Molie-piastica U.31 Molie-piastica U.31 Molie-piastica	0.02//02 dain/cmq 0.02/000 dain/cmq 0.02/004 dain/cmq 0.02/4/1 dain/cmq	2.5 2.5
CÖ. 1 E. 1 CE. 1 O CU.0	9 U.2U4 1U U.470 11 U.4U0 12 U.34U 12 U.2U4	LIIMU SABBIUSU Argilia Ilmosa LIIMU SABBIUSU SABBIA LIIMUSA		SCARSAMENTE ADDENSATA MEDIAMENTE CONSISENTE MEDIAMENTE CONSISENTE PUCU ADDENSATA PUCU ADDENSATA	00U 703 707 00U 00U	0.080 0.090 0.094 0.090 0.099	18 % U.31 Mone-plastica U.37 Mone-plastica 19 % 19 %	29 0.027309 dain/cmq 0.09100 dain/cmiq 30 30	0.8 2.3 3.0 1.3
ö.15 ö.15 o.∠ ö.∠5	12 U.4U8 10 U.34U 10 U.4U0 10 U.4U8	Limo argilioso Limo argilioso Argilia limosa Argilia limosa		iviediamente consistente wediamente consistente iviediamente consistente wediamente consistente	/8U /33 /33 /33	U./U3 U./U/ U./11 U./14	บ.ชา เพิ่มแย-piastica บ.ชา เพิ่มแย-piastica บ.ชา เพิ่มแย-piastica บ.ชา เพิ่มแย-piastica	0.755673 dain/cmq 0.626666 dain/cmq 0.626792 dain/cmq 0.626696 dain/cmq	3.U 2.5 2.5 2.5
	11 U.2/2 15 U.2/2 19 U.4U8 14 U.2U4 10 U.2U4	OADDIA LINE OABRIA FIMOOA OABRIA FIMOOA		FUCU ADDENSA IA FUCU ADDENSA IA FUCU ADDENSA IA FUCU ADDENSA IA SUAKSAMIEN I E ADDENSA IA	000 000 000 000 000	U./1/ U./2U U./23 U./20 U./29	19 % 23 % 21 % 19 % 18 %	3U 3T 3U 2W	1.5 1.9 2.2 1.5 0.8
0.55 0.5 0.05 0.7	11 U.4U8 10 U.4U8 11 U.34U 10 U.212	LIMO ARGIIIOSO ARGIIIA IIMOSA LIMO ARGIIIOSO LIIVIO AABBIOOO		Mediamente consistente Mediamente consistente Mediamente consistente POCO ADDENSA I A	/0/ /33 /0/ 33U	U./32 U./30 U./40 U./43	U.37 IVIOIIE-PIASTICA U.31 IVIOIIE-PIASTICA U.37 IVIOIIE-PIASTICA 119 70	บ.อยบอยอ ตลเง/cmq บ.อยาออ ตลเง/cmq บ.อยบอบอ ตลเง/cmq อบ	3.U 2.5 3.U
გ./ე გ.გ გ.გე გ.გე	70 U.212 9 U.212 9 U.212 9 U.212	LIMO SABBIOSO LIMO argilloso LIMO argilloso	::=::=::=: 	PUCU ADDENSA I A MEDIAMENTE CONSISTENTE INFEDIAMENTE CONSISTENTE MEDIAMENTE CONSISTENTE	55U 131 131 131	U./40 U./49 U./53 U./5/	19 % U.3 I Molle-plastica U.3 I Molle-plastica U.3 I Molle-plastica	30 0.561384 dain/cmq 0.561292 dain/cmq 0.561201 dain/cmq	1.5 2.5 2.5 2.5 2.5
0.95 9.05 9.1 9.15	1U U.34U 1U U.34U 9 U.34U 6 U.34U 6 U.272	LIITIO AIĞIIIOSO LIITIO AIĞIIIOSO LIITIO AIĞIIIOSO AIĞIIIA IITIOSO		Mediamente consistente Mediamente consistente Mediamente consistente Scarsamente consistente Scarsamente consistente	100 100 101 120 120	0.70U U.704 U.708 U.771 U.775	U.3 I Mone-piastica U.3 I Mone-piastica U.3 I Mone-piastica U.25 Fiuloo-piastica U.25 Fiuloo-piastica	0.02004 UAIN/CITIQ 0.02040 CAIN/CITIQ 0.00021 CAIN/CITIQ 0.490360 CAIN/CITIQ 0.490290 CAIN/CITIQ	2.0 2.5 2.0 2.0 2.0
9.2 9.25 9.3 9.35	0 U.2U4 8 U.2U4 9 U.2U4 4 U.130	LIIVIU SÄBBIUSU LIIVIU SABBIUSU Argiila IIMOSA LIMO argiiloso	;;=;=;=;=; ;;=;=;=;=;=;=;=;=;=;=;=;=;=;	OUAROAIVIEN LE AUDENDA LA OUAROAIVIEN LE AUDENDA LA PRIVA DI CONSISTENZA PRIVA DI CONSISTENZA	บอต บอต บตต ฮาต	U.//0 U./8U U./84 U./8/	10 % 18 % U.1 Fluido-plastica	29 29 U.3UZ/38 dain/cmq U.238214 dain/cmq	0.0 0.8 1.0 1.0
9.4 9.40 9.5 9.50	5 U.2U4 5 U.2U4 7 U.34U 8 U.34U	Argilia lifnosa Argilia lifnosa Argilia lifnosa Argilia lifnosa		Priva di consistenza Priva di consistenza Scarsamente consistente Scarsamente consistente	00U 00U 1UU 1ZU	0.790 0.797 0.797 0.800	U.1 Fluido-piastica U.1 Fluido-piastica U.1 Fluido-piastica U.15 Fluido-piastica U.25 Fluido-piastica	0.30258 dain/cmq 0.302459 dain/cmq 0.431306 dain/cmq 0.495653 dain/cmq	1.0
9.0 9.05 9.1 9.75 9.8	9 U.4/0 9 U.4U0 1U U.4U0 9 U.2/2	Argilia Argilia Ilmosa Argilia Ilmosa		Mediamente consistente Mediamente consistente Mediamente consistente Mediamente consistente Mediamente consistente	131 131 133 131 131	U.8U4 U.8U8 U.01∠ U.813 U.819	U.37 Molie-plastica U.31 Molie-plastica U.31 Molie-plastica U.31 Molie-plastica U.31 Molie-plastica	U.500018 GaIN/CMQ DITIONING 02420.0 DITIONING 02420.0 DITIONING 040400.0 DITIONING 040400.0	2.0 3.0 2.5 2.5 2.5 2.5 0.8 1.5 2.0
9.6 9.85 9.9 9.80	9 U.∠U4 1 U.34U	LINO AIGINOSO LINO SABBIOSO AIGINO AIGINOSO	::=::=::=: 	SCARSAMENTE ADDENSATA SCARSAMENTE ADDENSATA SCARSAMENTE CONSISTENTE	737 55U 7UU 72U	0.019 0.022 0.03 0.029	U.31 Molie-plastica U.15 Huldo-plastica U.25 Huldo-plastica	0.559049 dain/cmq 29 0.4500 dain/cmq 0.494950 dain/cmq	U.8 1.5 2.0

Prova Penetrometrica dinamica DPL30 n°

CARATTERISTICHE STRUMENTALI:


Massa battente = 30 kg. Altezza caduta = 20 cm. Sezione punta = 10 cmq

COOPROGETTO Committente: Località: via dello Sport Comune: **RUSSI**

1.80

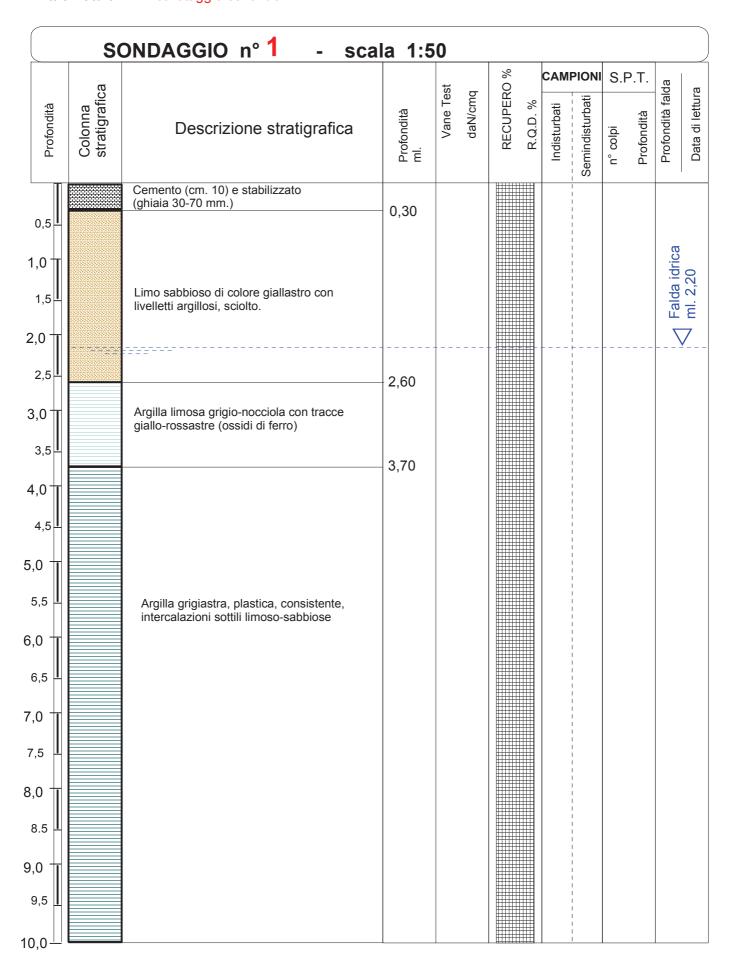
Data: 14.04.2016 Profondità Falda: ml.

Coeff. di sicurezza = 20

ANDREATTA dott. GIANCARLO - GEOLOGO
Via XXV Aprile nº 140 - Tel. 0546-656362. CastelBolognese (Ra)

Committ.: COOPROGETTO RUSSI Loc.: via dello Sport PARAMETRI GEOTECNICI - DPL30 N°

Data: 14.04.2016 Prof.acqua: ml. 1.80


COMMIT				KUBBI				VIA dello sport		Data:			FIOI.acqu		1.80	
Prof.	NT 7 0	Rp din.	Y' t	Y' t	Angolo	Attrito	Dr %	Addensamento	Kw / CARD	Kh	Cu	Consistenza	Cu1	Cu2	Kw (ARGIL	Kh
ml.	N10	daN/cmg	(Sabb.)	(Arg.)	Corr. Rdin.	Corr. Nspt	Sabb.	(SABBIA)	(SABE		da SPT daN/cmq	(ARGILLA)	TERZAGHI daN/cmg		(ARGIL	
0		daiv/ ciliq	uaiv	riiiC	0	0	Sabb.	(SADDIA)	uan/	liic	dan/ciliq		daiv/ ciliq		uan/	CIIIC
0.3	8	28.51	1650	1805	53	32	35	Sciolta	3	1.6	0.67	Plastica	0.91	0.90	8	2.85
0.4	5	17.82	1600	1735	45	31	23	Sciolta	2	1.0	0.35	Molle-plastica	0.59	0.56	5	1.78
0.5	3	10.69	1550	1659	40	29	18	Molto sciolta	1	0.6	0.28	Fluido-plastica	0.48	0.34	3	1.07
0.6	3 2	10.69 7.13	1550 1500	1659 1598	38 35	29 28	18 16	Molto sciolta Molto sciolta	1	0.6	0.28	Fluido-plastica Fluido-plastica	0.48	0.34	3	1.07
0.8	1	3.56	1500	1495	32	27	15	Molto sciolta	1	0.4	0.22	Fluido-plastica Fluido-plastica	0.32	0.11	1	0.71
0.9	1	3.56	1500	1495	31	27	15	Molto sciolta	1	0.2	0.20	Fluido-plastica	0.16	0.11	1	0.36
1	3	10.19	1550	1651	35	29	18	Molto sciolta	1	0.6	0.28	Fluido-plastica	0.45	0.34	3	1.02
1.1	2	6.79	1500	1591	33	28	16	Molto sciolta	1	0.4	0.22	Fluido-plastica	0.30	0.22	1	0.68
1.2	2	6.79	1500	1591	32	28	16	Molto sciolta	1	0.4	0.22	Fluido-plastica	0.30	0.22	1	0.68
1.3	2	6.79	1500	1591	32	28	16	Molto sciolta	1	0.4	0.22	Fluido-plastica	0.30	0.22	1	0.68
1.4	2	6.79 10.19	1500 1550	1591 1651	31 33	28 29	16 18	Molto sciolta Molto sciolta	1	0.4	0.22	Fluido-plastica Fluido-plastica	0.30	0.22	1 3	0.68
1.6	2	6.79	1500	1591	33	29	16	Moito sciolta Molto sciolta	1	0.6	0.28	Fluido-plastica Fluido-plastica	0.45	0.34	1	0.68
1.7	2	6.79	1500	1591	30	28	16	Molto sciolta	1	0.4	0.22	Fluido-plastica	0.30	0.22	1	0.68
1.8	3	10.19	550	651	32	29	18	Molto sciolta	1	0.6	0.28	Fluido-plastica	0.45	0.34	3	1.02
1.9	2	6.79	500	591	30	28	16	Molto sciolta	1	0.4	0.22	Fluido-plastica	0.30	0.22	1	0.68
2	3	9.73	550	645	32	29	18	Molto sciolta	1	0.6	0.28	Fluido-plastica	0.43	0.34	3	0.97
2.1	4	12.97	550	688	33	30	19	Sciolta	2	0.7	0.30	Molle-plastica	0.51	0.45	4	1.30
2.2	4	12.97 9.73	550 550	688 645	33 31	30 29	19 18	Sciolta Molto sciolta	2	0.7	0.30	Molle-plastica Fluido-plastica	0.51	0.45	4	1.30
2.3	2	6.49	500	645 584	31	29	18	Molto sciolta Molto sciolta	1	0.6	0.28	Fluido-plastica Fluido-plastica	0.43	0.34	1	0.65
2.4	2	6.49	500	584	30	28	16	Molto sciolta	1	0.4	0.22	Fluido-plastica Fluido-plastica	0.29	0.22	1	0.65
2.6	2	6.49	500	584	30	28	16	Molto sciolta	1	0.4	0.22	Fluido-plastica	0.29	0.22	1	0.65
2.7	3	9.73	550	645	31	29	18	Molto sciolta	1	0.6	0.28	Fluido-plastica	0.43	0.34	3	0.97
2.8	2	6.49	500	584	29	28	16	Molto sciolta	1	0.4	0.22	Fluido-plastica	0.29	0.22	1	0.65
2.9	3	9.73	550	645	31	29	18	Molto sciolta	1	0.6	0.28	Fluido-plastica	0.43	0.34	3	0.97
3 3.1	5	15.52 15.52	600 600	714 714	33	31 31	23 23	Sciolta Sciolta	2 2	0.9	0.35	Molle-plastica Molle-plastica	0.52	0.56	5 5	1.55
3.1	6	18.62	600	714	33 34	31	23	Sciolta Sciolta	3	1.1	0.35	Molle-plastica Molle-plastica	0.52	0.56	7	1.55
3.3	6	18.62	600	742	33	31	27	Sciolta	3	1.1	0.51	Molle-plastica Molle-plastica	0.62	0.67	7	1.86
3.4	6	18.62	600	742	33	31	27	Sciolta	3	1.1	0.51	Molle-plastica	0.62	0.67	7	1.86
3.5	7	21.72	650	765	34	32	31	Sciolta	3	1.2	0.59	Plastica	0.72	0.78	8	2.17
3.6	9	27.93	700	802	35	32	36	Media	4	1.6	0.74	Plastica	0.89	1.01	8	2.79
3.7	10	31.03	700	818	35	33	37	Media	4	1.8	0.83	Plastica	0.99	1.09	9	3.10
3.8	9	27.93	700	802	35	32	36	Media	4	1.6	0.74	Plastica	0.89	1.01	8	2.79
3.9	9	27.93 23.80	700	802	35	32 32	36 35	Media Sciolta	4	1.6	0.74	Plastica Plastica	0.89	1.01	8	2.79
4.1	8	26.78	650 700	778 796	34 34	32	36	Media	3	1.4	0.67	Plastica	0.79	1.01	8	2.38
4.2	8	23.80	650	778	34	32	35	Sciolta	3	1.4	0.67	Plastica	0.79	0.90	8	2.38
4.3	9	26.78	700	796	34	32	36	Media	4	1.5	0.74	Plastica	0.85	1.01	8	2.68
4.4	9	26.78	700	796	34	32	36	Media	4	1.5	0.74	Plastica	0.85	1.01	8	2.68
4.5	10	29.75	700	812	35	33	37	Media	4	1.7	0.83	Plastica	0.94	1.09	9	2.98
4.6	10	29.75	700	812	34	33	37	Media	4	1.7	0.83	Plastica	0.94	1.09	9	2.98
4.7	11	32.73	750	826	35	33	39	Media	4	1.9	1.00	Plastica	1.04	1.20	9	3.27
4.8	12 12	35.70 35.70	750 750	839 839	35	33	41 41	Media Media	5	2.0	1.10	Plastica Plastica	1.13	1.29	10 10	3.57
4.9 5	12	40.00	800	839 856	35 35	33 34	41 45	Media Media	5 5	2.0	1.10	Plastica Solido-plastica	1.13	1.29	10	4.00
5.1	14	40.00	800	856	35	34	45	Media	5	2.3	1.26	Solido-plastica	1.21	1.47	10	4.00
5.2	15	42.86	800	866	36	34	46	Media	5	2.4	1.26	Solido-plastica	1.30	1.48	10	4.29
5.3	14	40.00	800	856	35	34	45	Media	5	2.3	1.26	Solido-plastica	1.21	1.47	10	4.00
5.4	15	42.86	800	866	35	34	46	Media	5	2.4	1.26	Solido-plastica	1.30	1.48	10	4.29
5.5	16	45.71	800	876	36	34	46	Media	5	2.6	1.26	Solido-plastica	1.39	1.49	10	4.57
5.6	18	51.43	800	893	36	34	50	Media	6	2.9	1.34	Solido-plastica	1.49	1.59	11	5.14
5.7 5.8	21 22	60.00 62.86	850 850	916 923	37 37	35 35	54 55	Media Media	6 7	3.4	1.56	Solido-plastica	1.67	1.76	11	6.00
5.8	24	68.57	850	923	37	35	55	Media Media	7	3.6	1.62	Solido-plastica Solido-plastica	1.75	2.02	12	6.86
6	25	68.70	850	936	37	35	57	Media	7	3.9	1.80	Solido-plastica	1.83	2.10	12	6.87
									,							
			1		1											
			1		1											
															1	
			1		1											
															1	
			1		1											
			1		1											
															1	
															1	
															1	
															1	
			1		1											
			1		1											
			1		1											
			1		1										1	
															1	
			1		1											
			1		1											
			1		1											
			1		1											
															1	
			1		1											
			1		1											
			1		1											
			1		1											
															1	
															1	
															1	
															1	
			1		1											
			1		1											
			1		1											
	1		1	1	I		1		1	1	1		I	I		

Committente: Archivio personale
Data: 21.12.2004
Località: Via Molinaccio

Comune: RUSSI (Ra)
Attrezzatura: carotaggio continuo

Dott. Geologo ANDREATTA GIANCARLO Via XX Aprile n° 140 CASTELBOLOGNESE (Ra)

Tel. 0546-656362

